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The simulation of nuclear reactor fuel performance involves complex thermomechanical processes
between fuel pellets, made of fissile material, and the protective cladding barrier that surrounds the pel-
lets. This paper examines a subset of phenomena that are important in the development of an analysis
capability for fuel performance calculations, focusing on thermomechanics and diffusion within UO2 fuel
pellets. In this study, correlations from the literature are used for thermal conductivity, specific heat, and
oxygen diffusion. This study develops a three dimensional thermomechanical model fully-coupled to an
oxygen diffusion model. Both steady state and transient results are examined to compare this three
dimensional model with the literature. Further, this equation system is solved in a parallel, fully-coupled,
fully-implicit manner using a preconditioned Jacobian-free Newton Krylov method. Numerical results are
presented to explore the efficacy of this approach for examining selected fuel performance problems.
INL’s BISON fuels performance code is used to perform this analysis.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Economical operation is an important design and operational
objective for oxide fuel for use in light water reactors. As an over-
simplification, economical operation results when the life of a fuel
rod can be maximized (in terms of burnup) without resulting in
fuel failure or maintenance issues when replacing fuel rods.
Numerical modeling of fuel materials (in this case UO2 pellets) will
be an essential tool in support of this objective by providing a rel-
atively inexpensive mechanism for studying the impact of design
and operational changes on the life of a fuel rod.

Fuel failure may be traced to several phenomena, including cor-
rosion, mechanical (fretting) wear, and pellet cladding interaction
[1]. The recent Fuel Modeling at Extended Burnup (FUMEX II) re-
port [2] discusses several limitations of current fuel modeling
capabilities. This report concludes with ‘Mechanical interaction is
not well developed and further work in this area would be useful.’
Limiting this discussion to pellet cladding interaction (PCI), many
processes affect the nature of pellet expansion, the characteristics
of that expansion, and the geometry of pellet cladding contact;
namely the thermomechanics of the pellet and all processes that
govern pellet dynamics.

Ramirez et al. [3] present a numerical study of coupled heat and
oxygen diffusion in UO2 fuel pellets. The steady state results in [3]
have since been repeated by Shadid and Hooper within the
ll rights reserved.
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PelletTransport example in Trilinos [4]. The Ramirez study em-
ployed a one dimensional simulation to examine both the transient
and steady state relationship between temperature and oxygen
nonstoichiometry. The article concludes that hyperstoichiometry
significantly impacts the thermal conductivity of UO2 which affects
the maximum temperature of the fuel rod. Transient calculations
confirm a significant separation of time scales between the thermal
heating of a pellet and the hyperstoichiometric profile within the
pellet. One path toward an analysis capability for PCI might involve
extending [3,4] to three dimensions, adding mechanics models for
the pellet and cladding and a contact model to transfer stresses to
the cladding from the pellet, and add the remaining physics that
impact cladding integrity. Indeed, this paper proposes an interme-
diate result needed to achieve that objective.

This report examines a subset of processes that influence PCI;
the thermomechanics of a thermally-expanding pellet where the
expansion is a function of the local oxygen-to-metal (O/M) ratio
of the fuel. It proposes a three dimensional linear elastic finite ele-
ment model for the displacement of the pellet, and couples this
displacement to a three dimensional heat equation. These two
equations are coupled to a third, three dimensional oxygen diffu-
sion equation. While the displacement equation is linear, the com-
posite problem is nonlinear as the governing equations are coupled
together by material properties that are generally functions of den-
sity (modified by displacement), hyperstoichiometry (modified by
temperature), temperature (modified by thermal conductivity that
is a function of hyperstoichiometry), etc. The use of operator split
methods for the solution of coupled multiphysics problems of this
sort can lead to both stability and accuracy issues [5–7]. To avoid
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Fig. 1. Pictorial of the conceptual model.
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these considerations here, the composite nonlinear algebraic sys-
tem resulting from the finite element discretization of the equa-
tions is solved in a fully-coupled manner using a preconditioned
Jacobian-free Newton Krylov (JFNK) [8] method.

Ramirez shows that the thermal and oxygen diffusion problems
operate on significantly different time scales, related to the Lewis
number Le ¼ j=D, where j is the thermal diffusivity of the UO2 pel-
let and D is the chemical diffusivity of oxygen in the pellet. In a
realistic PCI calculation, there will be as a minimum two additional
time scales to be considered; one due to fission product driven
mechanical swelling of the pellet and a second that accounts for
the thermal and mechanical interaction between the pellet and
cladding across the narrowing gap. These disparate time scales
are expected to combine with the pellet (and cladding) mechanics
models and the contact model across the gap to result in a very
challenging numerical problem to solve. These considerations fur-
ther support the choice of the fully-implicit JFNK approach out-
lined in this paper as there are many examples in the literature
that propose the use of such a method on stiff coupled problems
with disparate length and time scales [9–11]. To our knowledge,
this paper details the first application of the parallel JFNK method
to the aforementioned reactor fuels application.

Higgs et al. [12] develop a two dimensional (r � z) multiphysics
model for fuel oxidation of defective fuel. This is a sophisticated
model, considering

1. gas phase transport in the pellet cladding gap,
2. interstitial oxygen diffusion in the pellet matrix,
3. gas phase transport in the fuel cracks, and
4. heat conduction in the pellet.

The present study considers only items 2 and 4 of Higg’s model
(a boundary condition is used that partially addresses 1), but notes
that the remainder of these capabilities will be important for a fuel
performance simulation capability. The degree of complexity of
such a simulation capability will require the development of effec-
tive preconditioning approaches for the JFNK method. This study
begins that development by examining preconditioning for the
coupled thermomechanics and oxygen diffusion equations.

Idaho National Laboratory’s BISON fuel performance code was
used to develop the results shown here. BISON is built upon INL’s
MOOSE: a parallel, nonlinear, computational framework [13].
MOOSE supports the use of complex, three dimensional meshes
and parallel computing that will be necessary for full rod and fuel
assembly calculations. This report closes with a demonstration cal-
culation of a dished pellet with a simple crack to illustrate the par-
allel three dimensional capabilities of the code.
2. Conceptual model

BISON, the fuels performance code developed using the Multi-
physics Object Oriented Simulation Environment (MOOSE), is de-
signed for fully-coupled steady and transient analysis and to be
efficient on both desktop computers and in massively parallel envi-
ronments. It employs physics based preconditioned Jacobian-free
Newton Krylov solution methods and is developed using modern
software engineering principles to form a robust, extensible soft-
ware architecture to ultimately provide a design and analysis capa-
bility for a wide range of nuclear phenomena [13]. This discussion
summarizes the current status of the BISON fuel performance anal-
ysis code and demonstrates results on selected three dimensional
capabilities that support fuel performance calculations.

In a multidimensional simulation, it is not straightforward to
maintain a computational mesh in the gap between the pellet
and cladding, as illustrated in Fig. 1, due to the composite radial
and axial displacement of the outside surface of the pellet with re-
spect to the cladding. The model developed here includes a thermal
boundary condition to account for the heat flux from the outside of
the pellet, through the gap and cladding, to the coolant (c.f., Fig. 2).
Further, the pellet is free to expand without being checked by the
cladding. Future work entails a more realistic gap and cladding
model; however, the approach presented here is sufficient to allow
comparison with the results in [3]. The problem consists of three
fully-coupled partial differential equations for heat conduction,
oxygen nonstoichiometry and linear elastic solid mechanics. Let
X 2 Rd, d ¼ 2;3 define the computational domain (the fuel pellet).

2.1. Pellet heat conduction model

The heat conduction model assumes fission reactions generate
heat at a uniformly distributed constant rate, Q,

qCp
@T
@t
þr � q� Q ¼ 0 T 2 X;

n � q ¼ qðTÞ T 2 CC ;

n � q ¼ 0 T 2 CT [ CB;

Tðt ¼ 0Þ ¼ T0 T 2 X;

ð1Þ

where T, q and Cp are temperature, density and specific heat of UO2,
respectively. The empirical models for these quantities are given in
Table 1, and match the values used in [3]. Here, CT denotes the top
and CB denotes the bottom boundary of the fuel pellet, and CC de-
notes the outer circumferential fuel pellet boundary such that
C ¼ CT [ CB [ CC , and qðTÞ is given by a clad and gap heat conduc-
tance model,

qðTÞ ¼ Tp � Tw
Lg

kðHeÞ þ
Lc

kðcladÞ

; ð2Þ

where the values for k are given in Tables 2 and 3, the temperatures
Tp, Tw and lengths Lg and Lc are shown in Fig. 2, and the geometric
configuration is illustrated in Fig. 1. The heat flux q within the
UO2 domain X may be written as [14]

q ¼ �krT � Q �DrC; ð3Þ

where k, D, and Q � denote thermal conductivity, heat of transport of
oxygen, and rC is the concentration gradient, respectively (c.f.,
Table 1). For the configuration studied, both the concentration gra-
dient and D are small, as is the actual transfer of mass due to oxygen
diffusion. The last term is therefore much smaller than krT , thus it
is neglected in this study, as it was in [3].



Fig. 2. Pictorial of the pellet, gap, clad geometry used for the thermal boundary
condition on the outside of the pellet in (2).

Table 2
Material properties for He.

Property Value Units Source

qðHeÞ qðTÞ ¼ 0:0818� 8275� 10�5ðT � 600:0Þ kg m�3 [3]
CpðHeÞ Cp ¼ 5190:0 J kg�1 K�1 [3]
kðHeÞ 0:0468þ 3:81� 10�4T � 6:79� 10�8T2 W m�1 K�1 [3]
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2.2. Oxygen diffusion model

A hyperstoichiometric model for oxygen is given in [3]. Let J de-
note the oxygen flux in the hyperstoichiometric regime with,

J ¼ �D rx� xQ �

FRT2rT
� �

; ð4Þ
Table 1
Material properties for UO2.

Property Value

qðUO2Þ qðTÞ ¼ 10960ðaþ bT þ cT2 þ dT3Þ�3

a ¼ 0:997
b ¼ 9:802� 10�6

c ¼ �2:705� 10�10

d ¼ 4:391� 10�13

9>>>=
>>>;

T < 923 K

a ¼ 0:997
b ¼ 1:179� 10�5

c ¼ �2:429� 10�9

d ¼ 1:219� 10�12

9>>>=
>>>;

T > 923 K

CpðUO2Þ CpðTÞ ¼ 264:256þ 0:047T

kðUO2Þ kðT; xÞ ¼ k0ðTÞ arctanðhðT;xÞÞ
hðT;xÞ þ 5:95� 10�11T3

k0ðTÞ ¼ ð3:24� 10�2 þ 2:51� 10�4TÞ�1

hðT; xÞ ¼ 3:67 expð�4:73� 10�4TÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xk0ðTÞ

p
aðUO2Þ aðTÞ ¼ aþ bT þ cT2 þ dT3

a ¼ 9:828� 10�6

b ¼ �6:390� 10�10

c ¼ 1:330 � 10�12

d ¼ �1:757� 10�17

9>>>=
>>>;

T < 923 K

a ¼ 1:1833� 10�5

b ¼ �5:013� 10�9

c ¼ 3:756� 10�12

d ¼ �6:125� 10�17

9>>>=
>>>;

T > 923 K

D1ðUO2Þ log10ðDðT; xÞÞ ¼ �9:386� 4:26� 103=T þ 1:2� 10�3Txþ 7

D2ðUO2Þ log10ðDðxÞÞ ¼ �7:9þ 6xþ log10ð2:0þ xÞ � log10ðxÞ T ¼ 12

D3ðUO2Þ DðTÞ ¼ 2:5 expð�16400=TÞ
Q�ðUO2Þ Q�ðxÞ ¼ �1380:8� 134435:5 expð�x=0:0261Þ
FðUO2Þ FðxÞ ¼ 2þx

2ð1�3xÞð1�2xÞ

EðUO2Þ EðT; xÞ ¼ 2:0128416� 1011ð1:0� 1:0915� 10�4TÞ expð�1

mðUO2Þ .3

a One of the reviewers of this paper noted that the value for b ¼ 9:082� 10�6 for T <
b The units given in the reference do not appear to be consistent with the magnitude

units in the reference should be listed as mJ kg�1 K�1, not J kg�1 K�1.
where D is diffusivity of UO2, F is the thermodynamic factor of oxy-
gen, Q � is the heat of transport of oxygen, and R is the universal gas
constant. The empirical models for these properties are given in Ta-
ble 1. The nonstoichiometric model for oxygen diffusion, x, is given
by

@x
@t
þr � J ¼ 0 x 2 X;

n � J ¼ 0 x 2 CT [ CB;

x ¼ xd x 2 CC ;

xðt ¼ 0Þ ¼ x0 x 2 X:

ð5Þ
2.3. Solid mechanics model

Simulations performed by Ramirez et al. [3] indicate a temper-
ature difference of � 350 K from the center of the fuel pellet to the
Units Source

kg m�3 [18]a

J kg�1 K�1 [3]b

W m�1 K�1 [3]

K�1 [16]

:5� 10�4Tlog10
2:0þx

x

� �
m2 s�1 [3]

73 K cm2 s�1 [19]

cm2 s�1 [12]

J mol�1 [3]

– [3]

:75xÞ Pa [20]

– [14]

923 K given in [18] is incorrect; this value should be b ¼ 9:802� 10�6.
obtained from the correlation presented therein. The authors assume here that the



Table 3
Material properties for clad.

Property Value Units Source

qðcladÞ q ¼ 17817:0 kg m�3 [3]
CpðcladÞ Cp ¼ 420:0 J kg�1 K�1 [3]
kðcladÞ kðTÞ ¼ 10:98þ 1:4� 10�2T � 7:44� 10�6T2 W m�1 K�1 [3]
aðcladÞ aðTÞ ¼ 1� 10�6ð16:0þ 4:62� 10�3TÞ K�1 [14]
EðcladÞ EðTÞ ¼ 9:21� 1010 � 4:05� 107T Pa [20]
mðcladÞ .32 – [14]
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outer edge, where the center of the pellet is at � 1150 K. At these
temperatures, Olander [14] describes polycrystalline UO2 as a brit-
tle material. Recent models treat the pellet as an incompressible
viscoelastic material and also take in account irradiation, porosity,
and thermal creep [15]. For simplicity, this paper considers the pel-
let as a uniform, pure elastic material, and leaves more realistic
mechanics to future work.

This study does not include the effect of porosity, but it does in-
clude the effect of temperature and hyperstoichiometry on Young’s
modulus (c.f., Table 1). Poisson’s ratio is assumed to remain con-
stant at a value of 0.3, although a better result could be obtained
by considering porosity and the increase of Poisson’s ratio with
temperature [14]. A temperature-dependent thermal expansion
coefficient a is employed in the thermal expansion term. Neither
thermal expansion or density of UO2 are adjusted for departure
from stoichiometry as they appear to be insensitive to this effect
[16,17].

The pellet is assumed to be fracture and defect free initially, and
it remains so throughout the simulation, even though thermally
driven stresses occur that are significantly beyond the fracture
stress of the oxide. Further, this study assumes that as the outside
surface of the pellet expands thermally, the cladding translates
outward at the same rate such that the gap distance remains con-
stant and the pellet and cladding do not interact mechanically.
Lastly, the study does not consider any radiation effects, change
in material properties due to burnup, or the formation of fission
products or swelling of the pellet due to fission product
accumulation.

Clearly, this is a very limited mechanics model, useful only for
development and prototyping activities. Future work includes
development of a fully-coupled pellet cladding mechanical interac-
tion (PCMI) capability, more sophisticated material closure models,
fracture capabilities, and fission product driven swelling of the pel-
let. Additionally, a nonlinear mechanical model for the cladding
must be added that includes plasticity, history dependent radiation
hardening, void swelling, radiation induced creep, and corrosion
effects.

A linear elastic model for the displacement u, using the closure
relationships in Table 1, was employed in this study as

@2u
@t2 � ATDAuþ f ¼ 0 u 2 X;

u ¼ 0 u 2 CB;

uðt ¼ 0Þ ¼ u0 u 2 X;
@u
@t
ðt ¼ 0Þ ¼ u00 u 2 X;

ð6Þ

with

A ¼

@x 0 0
0 @y 0
0 0 @z

@y @x 0
0 @z @y

@z 0 @x

2
666666664

3
777777775
; D ¼ c1

1 c2 c2 0 0 0
c2 1 c2 0 0 0
c2 c2 1 0 0 0
0 0 0 c3 0 0
0 0 0 0 c3 0
0 0 0 0 0 c3

2
666666664

3
777777775
;

and

c1 ¼
Eð1� mÞ

ð1þ mÞð1� mÞ ; c2 ¼
m

ð1� mÞ ; c3 ¼
ð1� 2mÞ
2ð1� mÞ :

The coefficients E and m are Young’s modulus and Poisson’s ra-
tio. They are summarized in Table 1 for the pellet. Eq. (6) is not va-
lid nor applied in the gap or cladding. The forcing term f weakly
enforces linear thermal expansion with coefficient a. The thermal
expansion coefficient a is given in Table 1 for the pellet.

2.4. Material property models

Material properties employed in this study for UO2, the helium
within the gap (He), and the cladding material are described in
Tables 1–3. These models were compiled from multiple sources
(listed in the fourth column).

2.5. Finite element discretization

Given the domain X 2 R3, the coordinate system of interest is
written as x ¼ ðx1; x2; x3Þ. The solution to the coupled Eqs. (1)–(6)
is approximated with a semidiscrete method consisting of a finite
element discretization of space and a finite difference discretiza-
tion of time. To develop weak forms for (1)–(6), one seeks approx-
imate values of T, x 2 V , and u 2W ¼ V � V � V , where V is an
appropriate subspace of H1ðXÞ, such that

qCpTt � Q ; v
� �

þ krT;rvð Þ � hqðTÞ;viCC
¼ 0; ð7Þ

xt ;vð Þ þ D rxþ xQ �

FRT2rT
� �

;rv
� �

¼ 0; ð8Þ

and

utt ;wð Þ þ lS u;wð Þ þ k r � u;r �wð Þ � ðT � TrefÞa;rwð Þ ¼ 0; ð9Þ

for all v 2 V and w 2W . In (7)–(9), ð�; �Þ denotes the inner product in
L2ðXÞ, h�; �iC is the inner product in L2ðCÞ, the subscript t in ð�Þt de-
notes the partial of ð�Þ with respect to time, a ¼ a½1;1;1�T, and

S u;wð Þ ¼
X3

i;j¼1

@jui þ @iuj
� �

@ jwi þ @iwj
� �

; ð10Þ

where l ¼ E
2ð1�mÞ and k ¼ Em

ð1þmÞð1�2mÞ. In (9), Tref is the temperature cor-

responding to zero displacement of the pellet, in this case 273 K.
The test space V is approximated by Vh using linear Lagrange fi-

nite elements such that Vh � V and Vh ¼ spanf/ig
n
i¼1. Then

qCpTt � Q ;/i

� �
þ krT;r/ið Þ � hqðTÞ;/iiCC

¼ 0; ð11Þ

xt ;/ið Þ þ D rxþ xQ �

FRT2rT
� �

;r/i

� �
¼ 0; ð12Þ

and

utt ;Uið Þ þ lS u;Uið Þ þ k r � u;r �Uið Þ � ðT � TrefÞa;rUið Þ ¼ 0;

ð13Þ

where Ui ¼ /i½1;1;1�
T holds for all /i. The trial space in (11)–(13) is

approximated similarly, where each v 2 Vh may be expressed as
vðt;xÞ ¼

Pn
j¼1v jðtÞ/jðxÞ. Thus (11)–(13) can be written as

Xn

j¼1

qCpðTjÞt/j � Q ;/i

� �
þ Tjkr/j;r/i

� �
� hqðTÞ;/iiCC

¼ 0; ð14Þ

Xn

j¼1

ðxjÞt/j;/i

� �
þ D xjr/j þ

xj/jQ
�

FRT2 rT
� �

;r/i

� �
¼ 0; ð15Þ
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and

Xn

j¼1

ðujÞttUj;Ui
� �

þ lujS Uj;Ui
� �

þ k r � ujUj;r �Ui
� �

� ðT � TrefÞa;rUið Þ ¼ 0: ð16Þ

Note that (14)–(16) are in the form of a vector of nonlinear equa-
tions FðxÞ ¼ 0, with

F1ðTÞ ¼
Xn

j¼1

qCpðTjÞt/j � Q ;/i

� �
þ Tjkr/j;r/i

� �
� hqðTÞ;/iiCC

;

ð17Þ

F2ðxÞ ¼
Xn

j¼1

ðxjÞt/j;/i

� �
þ D xjr/j þ

xj/jQ
�

FRT2 rT
� �

;r/i

� �
; ð18Þ

and

F3ðuÞ ¼
Xn

j¼1

ðujÞttUj;Ui
� �

þ lujS Uj;Ui
� �

þ k r � ujUj;r �Ui
� �

� ðT � TrefÞa;rUið Þ; ð19Þ

where T, x and u are vectors of unknowns with ðTÞi ¼ Ti, ðxÞi ¼ xi

and ðuÞi ¼ ui.

2.6. Time integration

Eqs. (17)–(19) are integrated in time using the implicit Euler
method [21]. Let Tk, xk and uk denote T, x and u at time step k. Then
(17) and (18) are discretized in time as

F1ðTÞ ¼
Xn

j¼1

qCp Tkþ1
j � Tk

j

� �
Dt

/j;/i

� �
� Q ;/ið Þ

þ Tkþ1
j kr/j;r/i

� �
� hqðTkþ1Þ;/iiCC

; ð20Þ

F2ðxÞ ¼
Xn

j¼1

xkþ1
j � xk

j

� �
Dt

/j;/i

� �

þ D xkþ1
j r/j þ

xkþ1
j /jQ

�

FRðTkþ1Þ2
rTkþ1

 !
;r/i

 !
; ð21Þ

and (19) becomes

F3ðuÞ ¼
Xn

j¼1

ukþ1
j � 2uk

j þ uk�1
j

� �
Dt2 Uj;Ui

� �
þ lukþ1

j S Uj;Ui
� �

þ kukþ1
j r �Uj;r �Ui
� �

� ðTkþ1 � TrefÞa;rUi

� �
: ð22Þ

Following relative scaling, the resulting system of nonlinear
algebraic equations is solved using the Jacobian-free Newton Kry-
lov nonlinear solver described in Section 2.7.

2.7. The nonlinear solver: Jacobian-free Newton Krylov

The code framework used in this study [13] is designed to sup-
port implementation of complex coupled multiphysics equation
systems using a preconditioned Jacobian-free Newton Krylov
architecture [8]. To summarize this approach in terms of the devel-
opment of a fuels performance capability:

1. Finite element expressions for the thermomechanics and oxy-
gen diffusion form a nonlinear residual,

2. Newton’s method is used to solve for a new problem state,
3. The Jacobian-free approximation is used to eliminate the need

to form and store the Jacobian needed by Newton’s method.
The Jacobian-free approximation also naturally supports effec-
tive coupling between physics and lends itself to an extensible
and modular implementation in software. This report presents an
efficient iterative solver for the nonlinear system given in (20)–
(22) that is based on the Jacobian-free Newton Krylov (JFNK)
methodology (c.f. [8] and references contained therein). The JFNK
solution method used in BISON begins with writing a weak form
of the above system of equations and casting it into a residual
function,

FðxÞ ¼ 0; ð23Þ

that is of length N, where N is the number of unknowns in the dis-
crete problem. The Jacobian of this system is an N � N sparse
matrix,

JðxÞ ¼ @FðxÞ
@x

; ð24Þ

where the components of FðxÞ are taken directly from Eqs. (20)–
(22). Given the Jacobian in this form, it is straightforward to express
the Newton iteration,

JðxðkÞÞ dxðkÞ ¼ �FðxðkÞÞ; ð25Þ

and

xðkþ1Þ  xðkÞ þ dxðkÞ; ð26Þ

where the superscript k denotes the iteration count of the current
Newton iteration. Using Newton’s method as shown here amounts
to implementing a sequence of steps:

1. Form the Jacobian matrix,
2. Solve the sparse linear system (25) to obtain dxðkÞ,
3. Apply the update (26) to obtain the next iteration of the solu-

tion state vector, xðkþ1Þ.

Even for moderately large grids, the cost of forming the Jacobian is
high and typically dominates the computation, making the above
algorithm impractical for most situations. Fortunately, Krylov iter-
ative solvers such as the generalized minimum residual (GMRES)
algorithm [22], which is used here to solve the Jacobian system,
do not require the Jacobian matrix itself but simply the action
of the Jacobian matrix on a vector. Approximating this matrix vec-
tor product by differencing, which requires two nonlinear func-
tion evaluations, is the basis of the JFNK method. Specifically, to
evaluate the matrix vector product JðxðkÞÞv, a finite difference
approach,

JðxðkÞÞv 	 FðxðkÞ þ evÞ � FðxðkÞÞ
e

; ð27Þ

is commonly used [8,23]. Here, e is chosen in an automatic fashion
to avoid problems with machine precision,

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ kuk2Þê

p
kvk2

; ð28Þ

with ê ¼ 10�12.
Using this Jacobian-free approach, the dominant cost of the

algorithm shifts from evaluating the Jacobian to the solution of
the linear system. Indeed, the solution cost of GMRES for elliptic
problems scales quadratically with the number of unknowns in
the grid, unless effective preconditioning is used [24]. This work
employs physics-based preconditioning where preconditioning is
applied to the diagonal blocks of the Jacobian [24,25].
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2.8. Preconditioning

In order to efficiently solve (20)–(22) with a Jacobian-free New-
ton Krylov method, a physics based approach where precondition-
ing is applied to the elliptic blocks of the Jacobian, is employed. The
right preconditioned form of the linear system (25) is

JðxðkÞÞ M�1ðMdxðkÞÞ ¼ �FðxðkÞÞ; ð29Þ

where M�1 symbolically represents the preconditioning process.
The matrix free version of (27) is then

JðxðkÞÞM�1v 	 FðxðkÞ þ eM�1vÞ � FðxðkÞÞ
e

; ð30Þ

where M ¼ diagðM1;M2;M3Þ, with

ðM1Þij ¼
qCp

Dt
/i;/j

� �
þ k r/i;r/j

� �
;

ðM2Þij ¼
1
Dt

/i;/j

� �
þ D r/i þ

/jQ
�

FRT2rT
� �

;r/j

� �
;

and

ðM3Þij ¼
1

Dt2 Ui;Uj
� �

þ lS Ui;Uj
� �

þ k r �Ui;r �Uj
� �

:

The preconditioner M�1 is approximated using the algebraic
multigrid package BoomerAMG [26] in Hypre [27]. Further, Boome-
rAMG may be used in concert with the additive Schwarz method in
PETSc [28]. The JFNK iteration is provided by the SNES nonlinear
solver, also contained in PETSc.
3. Results

With the theoretical and numerical basis of the coupled ther-
momechanics/oxygen diffusion problem fully developed, this
study now examines both steady state and transient problems sim-
ilar to those considered in [3]. Fig. 3(a) is a geometric representa-
Fig. 3. Pictorial and dimensions of the fuel configuration that is the basis for this study. M
in the text. This mesh was used for the following steady state and transient results.
tion showing the dimensions of the pellet-gap-cladding system
examined in this study. A three dimensional all-hexahedra mesh,
generated using CUBIT [29], is used to discretize the pellet (c.f.,
Fig. 3(b)). Neither the gap between the pellet and cladding or the
cladding are meshed; this study assumes that the cladding and pel-
let do not contact during pellet expansion. Given an appropriate
selection of boundary conditions and a uniform gap around the
pellet, the results will be axisymmetric. As such, these results
may be compared and contrasted with [3].

3.1. Steady state results

The simulation of steady and transient heat and oxygen diffu-
sion in oxide fuels consists of strongly coupled nonlinear heat
transfer and diffusion of chemical species within multiple materi-
als including the fuel rod, cladding and gap. Solutions are charac-
terized by strong temperature gradients and for transient
simulations; thermal diffusion and diffusion of chemical species
that operate on vastly different time scales. The separation of these
time scales is quantified by the Lewis number Le. To provide the
steady state solution to compare with Figs. 2 and 3 of [3], the cou-
pled thermomechanics/oxygen diffusion equation system (1)–(6)
was solved, employing fixed Dirichlet conditions of x ¼ 0:02 for
hyperstoichiometry and T ¼ 810 K for temperature on the outside
of the pellet and a constant heat source of 2� 108 W m�3. These re-
sults are shown in Figs. 3(b) and 4. The impact of coupled oxygen
diffusion is clear on both the pellet temperature and thermal
expansion.

Fig. 4 shows the pellet temperature and displacement vs. dis-
tance from the center of the pellet. Given the choice of boundary
conditions and a constant gap, there is negligible variation of the
three dimensional solution for temperature and oxygen nonstoi-
chiometry azimuthally at the center of the pellet, allowing a
straightforward comparison with the one dimensional results of
Ramirez et al. [3]. The temperature and nonstoichiometry (x) re-
sults obtained here are indeed similar. Fig. 4(b) shows the impact
of the coupled oxygen diffusion model on pellet displacement.
esh is colored with the temperature solution of the steady state problem described
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Fig. 5 shows the effectiveness of the JFNK solver. Note the strong
reduction in nonlinear residual with increasing Newton iterations.
In comparing the results with and without the oxygen diffusion
equation; presence of the oxygen diffusion equation negatively im-
pacts the nonlinear convergence somewhat.

3.2. Transient results

The next set of results considered were developed to compare
with Fig. 6 in [3]. In this case, a Dirichlet condition for hyperstoichi-
ometry x ¼ 0:01 is applied on the outside of the pellet. The heat
flux from the outside surface of the pellet is described by (2). In this
equation, Tp is the instantaneous temperature on the outside of the
pellet, Tw ¼ 750 K, Lg ¼ 0:03 mm, kðHeÞ is from Table 1 using a
temperature of ðTp þ TwÞ=2, Lc ¼ 0:5 mm, and kðcladÞ is from Table
1 using a temperature of 0:1ðTp � TwÞ þ Tw. In addition, initial con-
ditions for hyperstoichiometry of x ¼ xo ¼ 0:01 and temperature
T ¼ To ¼ 750 K are applied across the pellet. The initial conditions
for displacement correspond to the displacement field of a pellet at
750 K (note that zero displacement is defined to occur at
Tref ¼ 273 K). The heat generation rate varies as a function of time,

_QðtÞ ¼ _Qo þ
_Qmax � _Q o

1þ 10 exp½�ð�10þ t=sÞ� ; ð31Þ

where _Qo ¼ 0 W m�3, _Qmax ¼ 2� 108 W m�3, and s ¼ 45 s.
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Fig. 5. Nonlinear convergence behavior of the JFNK solution of Eqs. (1)–(6). Note
the strong convergence behavior of the nonlinear solver on the fully-coupled
problem consisting of 2� 105 unknowns. These results are preconditioned and are
calculated in parallel.
Fig. 6 shows a plot of Lewis number Le ¼ j=D, for three dif-
ferent temperatures, T ¼ 800 K, 1273 K, and 1400 K. The curves
marked [3] are using the values of Cp and D from Ramirez
et al. [3] (D1 in Table 1), [12] uses the D from Higgs [12] (D3

in Table 1), and [19] uses the D from Ruello [19] (D2 in Table
1). When the Cp and D values given in Eqs. (1) and (2) of [3]
are used to calculate Le, the results match Fig. 5 of that paper.
These results are significantly different than Le calculated using
data from other sources. As discussed in Table 1, the Cp given
in Eq. (1) of [3] is roughly a factor of 1000 greater than those
sources cited in Chapter 2 of [20]. Given this, this study assumed
that the units in Eq. (1) of [3] are a typo and should be listed as
m J kg�1 K�1. If this is adjusted, Lewis numbers shown by the
curves labeled as [3]* in Fig. 6 are obtained. The correlation pro-
posed by [19] is given for T ¼ 1273 K and is a function of x. The
slope of this correlation matches [3]* up to x ¼ 3� 10�2, but is
lower by a factor of 10. The correlation proposed by [12] does
not account for x and thus does not match the slope of [3]* with
increasing x. Further, this correlation is also lower by a factor of
2 for small values of x, and the curves separate further as x
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Table 1). Three sets of data for D are shown corresponding to D1 obtained from [3],
D2 from Ruello et al. [19], and D3 from Higgs et al. [12] (see text).
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increases. As the adjusted curves [3]* use D1 which is a function
of both temperature and hyperstoichiometry, this correlation
was used in these results.

Fig. 7 shows the transient response of the three dimensional
pellet given the above conditions. In this figure, only the results
(a) Radial displacement of the pellet shown at the top of the pellet
and at a point 1 4 down from the top. Note the impact of hyperstoi-
chiometry on the radial displacement.
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Fig. 9. Displacement of the pellet at selected location
that correspond to xo ¼ 0:01 are shown, and _Q , xo, and To are iden-
tical to those used to generate Fig. 6 of [3]. The results are very sim-
ilar, with the exception of a ‘steeper’ response of Tmax=To to the
ramp in _Q , and a difference in time scales between the thermal
and diffusion responses. As the data used in this transient corre-
spond to the [3]* Lewis number curves in Fig. 6, these differences
are likely due to the Lewis number issue discussed in the last
paragraph.

These results employ a dynamical time step mechanism similar
to that proposed in [30], and Fig. 8 shows the timestep history of
this calculation. The solution methodology in BISON is fully-impli-
cit; there is no need to limit the timestep to achieve numerical sta-
bility with this approach. This level of flexibility will be very
important for extended burnup calculations, allowing long dura-
tion timesteps to be employed when the fuel properties and struc-
ture is changing slowly.

Lastly, Fig. 9 shows the transient displacement of the pellet with
respect to time. Fig. 9(a) shows the radial displacement of the
pellet at the outer edge, at a location on top of the pellet, and at
a location 1=4 the way down. The displacement is clearly two
dimensional, the top of the pellet expands outward further than
the midsection. Towards the end of the simulation (t > 1�106 s),
oxygen diffusion impacts both the modulus and temperature to
cause further pellet expansion in the radial direction. Similar
behavior is seen in the axial displacement shown in Fig. 9(b).

3.3. Three dimensional results

The final topic of this report is a demonstration of parallel, three
dimensional, fully-coupled thermomechanics of a simple, cracked
pellet. Again, only the pellet is meshed, but the presence of the pre-
defined crack in the mesh and the boundary conditions on the top
and bottom of the pellet create a true three dimensional result,
shown in Fig. 10. While this is an idealized example, it serves to
illustrate the ability to perform true three dimensional parallel
simulation within BISON on a more representative, dished pellet,
geometry.

The parallel simulation was run on 512 processors of INL’s Ice-
Storm computer. The boundary conditions consisted of the pellet
bottom resting on a frictionless surface. The initial condition was
a constant heat generation term to mimic a constant energy gener-
ation rate within the pellet. Thermal heating of the pellet then en-
sues, directly leading to deformation of the pellet.
b) Axial displacement of the pellet shown at the center of the pellet
and at the outer edge.
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Fig. 11(a) illustrates an exaggerated view, where the magnitude
of displacement was increased by a factor of 10 to highlight the
deformation local to the crack. The three dimensional behavior of
the cracked pellet is apparent in this diagram, note the raised edge
near the root of the crack on top of the pellet. This raised area
quickly decays to the mean elevation of the dish a short distance
away from the crack. Also note the deformation toward the clad-
ding near the outer edge of the crack. It is clear, even with this sim-
ple model, that local deformation near cracks will significantly
alter the geometry of the pellet in these areas and the mechanics
of its interaction with the cladding. Fig. 11(b) depicts an oxygen
diffusion simulation of similar, but uncracked, pellet geometry.
Fig. 10. Parallel three dimensional representative simulation of a dished pellet showing
shows pellet at the onset of thermal expansion and (b) shows pellet in thermal and mec

Fig. 11. Representative simulation of UO2 pellet showing oxygen diffusion coupled to t
Fig. 10 with the displacement magnified by a factor of 10 to illustrate complex defor
hyperstoichiometry (x) in the pellet, or UOð2þxÞ.
The legend in the diagram corresponds to the degree of hypersto-
ichiometry x in the oxide.

4. Summary

This study develops a system of fully-coupled nonlinear, tran-
sient partial differential equations for a thermomechanics/oxygen
diffusion problem that serve as a simple example of a UO2 fuel pel-
let for comparison with one dimensional data by Ramirez et al. [3].
The MOOSE framework was employed to enable efficient solution of
finite element discretizations via parallel JFNK methods [13]. With
the exception of the Lewis number issue discussed in the previous
a crack extending from the center of the pellet to the right outer edge, where (a)
hanical equilibrium. Note how crack opens due to thermal expansion of the pellet.

hermomechanics. Figure (a) shows the thermomechanical equilibrium results from
mation near the ‘root’ of the crack. In (b), the coloration indicates the degree of
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section, this study presented results that were in general agree-
ment with [3] for a steady state and transient pellet simulation.

In so doing, the proposed preconditioned JFNK approach dem-
onstrated strong nonlinear convergence on a multiprocessor simu-
lation of a pellet possessing 2� 105 unknowns. To extend these
results, a finer dished pellet simulation containing an idealized
fracture demonstrated the capability of the code on a true three
dimensional problem using a larger number of processors. While
this report describes an initial framework that is physically incom-
plete, the demonstration of a robust implicit thermomechanical
basis is certainly a requirement to be satisfied on the path to more
comprehensive and representative fuel physics, and ultimately a
useful fuel performance simulation capability.

In closing, the proposed approach as implemented in BISON

appears quite effective for the three dimensional fuel pellet
configurations examined, giving excellent nonlinear convergence
properties on the combined system. Fully-coupled solutions of
three dimensional thermomechanics coupled with oxygen diffu-
sion appear quite plausible (and efficient) using the JFNK approach
described here.

Acknowledgements

The submitted manuscript has been authored by a contractor of
the U.S. Government under Contract No. DEAC07-05ID14517 (INL/
JOU-08-15115). Accordingly, the U.S. Government retains a
non-exclusive, royalty-free license to publish or reproduce the
published form of this contribution, or allow others to do so, for
U.S. Government purposes.

References

[1] Electric Power Research Institute, Frequently Asked Questions: Fuel Reliability
Guidelines, <http://mydocs.epri.com/docs/public/FRP%20DEL%20FAQ1c.pdf>,
2008.

[2] J.C. Killeen, J.A. Turnbull, E. Sartori, in: Proceedings of the 2007 International
LWR Fuel Performance Meeting, San Francisco, California, Paper 1102, 2007.
[3] J. Ramirez, M. Stan, P. Cristea, J. Nucl. Mater. 359 (3) (2006) 174.
[4] J.N. Shadid, R. Hooper, Trilinos Pellet Transport Example Code. <http://

trilinos.sandia.gov>.
[5] D.L. Ropp, J.N. Shadid, C.C. Ober, J. Comput. Phys. 194 (2) (2004) 544.
[6] D.L. Ropp, J.N. Shadid, J. Comput. Phys. 203 (2) (2005) 449.
[7] V.A. Mousseau, J. Comput. Phys. 200 (2004) 104.
[8] D.A. Knoll, D.E. Keyes, J. Comput. Phys. 193 (2) (2004) 357.
[9] D.A. Knoll, V.A. Mousseau, L. Chacon, J.M. Reisner, SIAM J. Sci. Comput. 25

(2005) 213.
[10] J.M. Reisner, A. Wyszogrodzki, V.A. Mousseau, D.A. Knoll, J. Comput. Phys. 189

(2003) 30.
[11] V.A. Mousseau, D.A. Knoll, J. Comput. Phys. 190 (2003) 42.
[12] J.D. Higgs, B.J. Lewis, W.T. Thompson, Z. He, J. Nucl. Mater. 366 (2007) 99.
[13] D. Gaston, C. Newman, G. Hansen, D. Lebrun-Grandié, Nucl. Eng. Design,

submitted for publication.
[14] D. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, Technical

Information Center, Energy Research and Development Administration, 1976.
[15] B. Michel, J. Sercombe, G. Thouvenin, Nucl. Eng. Design 238 (2008) 1612.
[16] D.G. Martin, J. Nucl. Mater. 152 (2) (1988) 94.
[17] J.K. Fink, Thermal Expansion of Solid Uranium Dioxide, <http://www.insc.

anl.gov/matprop/uo2/thrm_exp/solid/expsuo2.pdf>, 1999.
[18] J.K. Fink, J. Nucl. Mater. 279 (1) (2000) 1.
[19] P. Ruello, G. Chirlesan, G. Petot-Ervas, C. Petot, L. Desgranges, J. Nucl. Mater.

325 (2004) 202.
[20] J.K. Hohorst, SCDAP/RELAP5/MOD2 Code Manual, Volume. 4: MATPRO–A

Library of Materials Properties for Light-Water-Reactor Accident Analysis,
Technical Report, NUREG/CR-5273, EGG-2555, 1990.

[21] U.M. Ascher, L.R. Petzold, Computer Methods for Ordinary Differential
Equations and Differential–Algebraic Equations, SIAM, Philadelphia, PA, 1998.

[22] Y. Saad, Iterative Methods for Sparse Linear Systems, The PWS Series in
Computer Science, PWS Publishing Company, Boston, MA, 1995.

[23] M. Pernice, H.F. Walker, SIAM J. Sci. Comput. 19 (1) (1998) 302.
[24] D.A. Knoll, W.J. Rider, SIAM J. Sci. Comput. 21 (2000) 691.
[25] L. Chacon, D.A. Knoll, J.M. Finn, J. Comput. Phys. 178 (2002) 15.
[26] V.E. Henson, U.M. Yang, Appl. Numer. Math. 41 (2000) 155.
[27] R.D. Falgout, U.M. Yang, in: International Conference on Computational

Science, vol. 3, 2002, p. 632.
[28] Satish Balay, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh

Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, Hong
Zhang, PETSc Users Manual, Technical Report ANL-95/11 – Revision 2.1.5,
Argonne National Laboratory, 2004.

[29] Sandia National Laboratories, CUBIT: Geometry and Mesh Generation Toolkit,
<http://cubit.sandia.gov>, 2008.

[30] M.A. Pope, V.A. Mousseau, in: The 12th International Topical Meeting on
Nuclear Reactor Thermal Hydraulics (NURETH-12), Log Number: 239, Sheraton
Station Square, Pittsburgh, Pennsylvania, USA., 2007.

http://mydocs.epri.com/docs/public/FRP%20DEL%20FAQ1c.pdf
http://trilinos.sandia.gov
http://trilinos.sandia.gov
http://www.insc.anl.gov/matprop/uo2/thrm_exp/solid/expsuo2.pdf
http://www.insc.anl.gov/matprop/uo2/thrm_exp/solid/expsuo2.pdf
http://cubit.sandia.gov

	Three dimensional coupled simulation of thermomechanics, heat,  and oxygen diffusion in {{\rm UO}}_{2} nuclear fuel rods
	Introduction
	Conceptual model
	Pellet heat conduction model
	Oxygen diffusion model
	Solid mechanics model
	Material property models
	Finite element discretization
	Time integration
	The nonlinear solver: Jacobian-free Newton Krylov
	Preconditioning

	Results
	Steady state results
	Transient results
	Three dimensional results

	Summary
	Acknowledgements
	References


